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Motivated by Ying’ work on automata theory based on quantum logic (Ying, M. S.
(2000). International Journal of Therotical Physics, 39(4): 985-996; 39(11): 2545—
2557) and inspired by the close relationship between the automata theory and the theory
of formal grammars, we have established a basic framework of grammar theory on
guantum logic and shown that the set-afalued quantum regular languages generated

by |-valued quantum regular grammars coincides with the sétvalued quantum
languages recognized byalued quantum automata.
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1. PRELIMINARIES

To provide a new model of quantum computation, Ying used the semantically
analysis approach to study the automata theory based on quantum logic. Ying
presented a basic framework of automata theory on quantum logic (Ying, 2000a,b).
In particular, Ying introduced the orthomodular lattice-valued quantum predicate
of recognizability and established some of its fundamental properties. The most
interesting result obtained is the Proposition 2 in Ying (2000b) that says that
the language recognized by the product of automata is the intersection of the
languages recognized by the factorsiiff the truth-value lattice of the underlying logic
is distributive. But an orthomodular lattice possessing distributivity is a Boolean
algebral! This negative result may help us to clarify the boundary between classical
computation and quantum computation. Lu and Zheng (2002) defined and studied
three different types of lattice-valued finite state quantum automata (LQA) and
four different kinds of LQA operation, discussed their advantages, disadvantages,
and various properties. The mostinteresting results (Lu and Zheng, 2002) obtained
are the Theorem 3.14, Theorem 3.15, and Theorem 3.16 that say that the validity
of many properties of the latticeAT (I, =, ®), such as whether it is complete,
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distributive, or modular, depends on the corresponding properties of the original
lattice.

With the close relationship between automaton theory and the theory of for-
mal grammars in our minds, we have to consider whether or not we can establish
a grammar theory based on quantum logic corresponding to the automaton theory
based on quantum logic established by Ying (2000a,b). If we can do so, could we
obtain the relation between quantum automa and quantum grammars correspond-
ing to the classical one?

First let’s review the classical automata theory and formal grammar theory.

1.1. Classical Automaton Theory

Definition 1.1. A finite state automaton is a quintugié (Howie, 1991), where
M=(Q, A ¢,i,T)

Q is a finite nonempty set, called the statesvf

A'is a finite nonempty set, called the set of inputs or the alphablgt; of

i € Qis theinitial state oM,

T is a nonempty subset @ and the elements &f are called the terminal states
of M; ¢ is a mapping fromQ x Ato Q, called the state trnsition function ™.

It is natural to expang to be a mapping fron® x A* to Q in a recursive way by
stipulating that

»(q, 1) = q(g € Q) (1 stands for the empty word)
9(9, wa) = p(p(d, W), a)(d € Q,w e A", a € A)

An elementw of A* is said to recognized by if ¢(i, w) € T. The language
L(M) recognized by is the set of all elements in A* that are recognized by
M, that is to say

L(M) ={w € A*|p(i,w) € T}

Letg(azaz...an) = ', then the states, ' in the automaton are connected by a
path

133 p—-sg3q

The worda;a; ... a, is called the label of the path. A path will be called
successful if it begins with the initialand ends with a terminal statén T. Thus
w e L(M) if and only if there exists a successful path with lalvel
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1.2. The Classical Formal Grammar Theory

Definition 1.2. A formal grammar (phrase structure grammar) is a quadruple
(Howie, 1991)

' =(V, A nro0)

V is a finite set of symbols called the vocabularyiof

Ais a nonempty subset & called the terminal alphabet &f;

7 is a finite subset of \\A)™ x V*. The elementsy, v) of = are called the
productions of", and we writeu — v whenevery, v) € r;

o € V\Ais an initial symbol.

Formally, forw, w" in V* we writew = w’ if there existx, y in V* and a
productionu — v in r such thatv = xuy, w’ = xvy. We say thatv’ derives from
w. We writew = z if eitherw = z or there existvq, Wy, . .., Wy, (withn > 2) in
V* such thatwv = wy, z=w, andw; = wij1(i =1, 2,...,n—1). We refer to
this chain of transformations as a derivatiolinand say that derives fromw.

The languagé (") generated by is the set of words in the terminal alphabet
A that can be derived in this way from i.e.,L(I") = {w € A* : o = w}.

The simplest type of grammar is a regular grammar, where every production
in 7 is either of the form

a — XB(x € AT, a, B € V\A)
or of the form
a— Y@ e V\Aye A
A grammar is hyper-regular if all productions have the form
a— aBa, e V\A ac A
or the form
a— 1o € V\A)

A language is regular (hyper-regular) if it can be generated by a regular
(hyper-regular) grammar.

2. GRAMMAR THEORY BASED ON QUANTUM LOGIC
2.1. Automaton Theory Based on Quantum Logic

Ying (2000a,b) presented a basic framework for automaton theory based on
qguantum logic. We repeat the concept oflarmlued quantum automaton over
defined by Ying (2000a,b) in a slightly different notation and definition.
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Definition 2.1. Letl = (L, <, A, v, L, 0, 1) be an orthomodular lattice arche
a finite alphabet (Ying, 2000b). Then kwalued quantum automaton ovAris a
quintupleM, where

M == (Ql Al(pl IYT)l

Q is a finite set of states;
A'is a finite alphabet;
i € Qisthe initial state;
T C Qis the set of terminal states;
@ is anl-valued subset o x A x Q, i.e., amapping fronQ x A x Q into
L and is called thé-valued quantum transition relation bf. Intuitively, for and
p,q e Qando € A ¢(p, o,q) indicates the truth-value of the proposition that
inputo causes statp to becomey.

An l-valued quantum automaton ovéy determines ar-valued (unary)
predicate reg on A* U, AX and it is defined as follows: for all > 0,w =
01,...,0k € A,

recu(w) =regy(oy...ok)
Zl@0 =1i,q1, ..., %1€ Q, ok € T)pathy (doors - . - - 10kG)
where

pathy, (Goosth - - G- 10kk) = AX_ol(a), 141, Gy 1) € ]

Ok+1 = Ok oks1 =1 and ¢(0k, ok+1, Gk1) = @(Gk, 1,0k) € L.

Intuitively, reqy (w) stands for the proposition that the wands recognized
by the quantum automatdvl and its truth-value is

def
value(reg(w)) = value(reg (o1 . . . 0k)) = Vao=i,ai,....qc 1€ Q,qeeT Alf:o

(0, 011, dj 1)l (W) E'value(reg (w)).

We call anl -valued subset oA* anl-valued quantum language ov&rThus,
thel-valued quantum language ovArgenerated by is L(M), where

L(M) = {(w, In(w))|w € A")}.

2.2. Grammar Theory Based on Quantum Logic

Definition 2.2. Letl = (L, <, A, Vv, L, 0, 1) be an orthomodular lattice. Then an
[-valued quantum grammar is a quadru@ewhere

G=(V,T,I,P)



Grammar Theory Based on Quantum Logic 1681

Vis a finite alphabet of variables;

T is a finite alphabet of terminals;

| €V is aninitial variable;

P is a finite set of productiong — B, € VT, 8 € (VU T)*.

Every productiorw — g € P has avalue i, i.e., there exists a mappihg
from P into L such that(« — B) € L foranya — g8 € P.

If w’ derives fromw, i.e.,w = w’ by the productionx — 8 € P, we define
I(w=w)=l(@— B)eL.lfw>z ie., eithew = z, thenlw=2) € L or
there existwi, Wy, ..., W, (with n > 2) in V* such thatw = wj, z=w, and
w; = wi(i =1, 2,...,n— 1) with the corresponding productien — g; for
everyw; = wi1(i =1,2,...,n—1), then

(W= 2) = AT (Wi = Wigg) = AN (e — B).

An |-valued quantum gramm&s is regular if it has only productions of the
form

a1 — Bax(B e T, ar, a2 € V) with I(a; — praz) € L
or of the form
ar—> BB eT  a1,eV) with I(ag — B) € L.

An |-valued quantum gramm& is hyper-regular if it has only productions
of the form

a1 — Bax(BeT,a1,02€ V) with (e — prap) € L
or of the form
a— o eV) with I(eg —1)elL.

Anl-valued quantum grammar determines-aalued (unary) predicate rec
onT* = UX Tk, and itis defined as follows: for al > 0,w € T*,

recs(w) d=e'((EIW1 =1,Wy, ...,Wx_1 € (VUT)* wy = w)derig
X (W1 = Wa, ..., Wk_1 = W),
where the derivation degree wfis defined as follows:
derig (Wi = Wa, ..., W1 = Wi) = AT (wy = wi4g),
value(reg (w)) d=Ewa1=|,wz,m,wk,le(vuT)*,wk:w AT (Wi = wigg),

lg(w) d:efvalue(re@(w)).
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The languagé. (G) generated bys is
L(G) = {(w, lc(W))lw € T*}.

An |-valued quantum (hyper-) regular language is one generated by some
[-valued quantum (hyper-) regular grammar.

Letl = (L, <, A, V, L, 0, 1) be an orthomodular lattice. Twwalued quan-
tum grammarG; = (V4, T, 11, P1) andG, = (V,, T, |2, P,) are equivalent, i.e.,
L(G1) = L(Gy), if Ig, (W) = lg,(w) forallw € T*.

First we can obtain the important relation betwéemlued quantum regular
languages and quantum hyper-regular languages as same as that in class one.

Lemma 2.1. Every |-valued quantum regular language is an I-valued quantum
hyper-regular language.

Proof: Let | =(L, <, A,V,1,0,1) be an orthomodular lattice an@ =
(V, T, I, P) is anl-valued quantum regular grammar. Then the languae)
generated bys is

L(G) = {(w,le(W))lw € T"}

We can define ah-valued hyper-regular gramm&; = (V1, T, |, P1) such
thatL(G) = L(Gy).
For each production

a— aay...anB € P with gl - aja2...amB) € L Q)
Whenm =1, we havea; e T,a,8 €V C V1, anda — a38 € P, with
lg,(@ = &) =lg(a — a1B) € L, as required; whem > 2,a;, 8y, ...,8m €
T,a, B € V C Vy, and we can define non-terminal symbaglseo, ..., {m_1in V1
and within P, mimic the production (1) by means of productions
o — a181, 8 —> al2, ..., {m_1 —> amP € P, with |Gl(0( — algl)
= |G1(§1 —> al)=...= |Gl(§mfl — amB) =lgla — a1a2...amB). (2)
Then

lg, (@ = a1@z...ampB)
=lg,(@ > &s1) Alg, (&1 = @) A ... Al (Em-1 — amB)
=lg(a — a1az...amp).
For each production

a— biby...bhe P with Ig(e — biby...by) eL. 3)
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Whenn=0,a¢ € V € Vq, and we havex — 1€ P; with lg, (¢ — 1) =

lg(e — 1) € L, as required; whem > 1,by, by, ...,bh e T, € V C V4, and
we can define nonterminal symbaijs 72, ..., n, in Vi and within P, mimic the
production (3) by means of productions
o —> blnla ny — b27]2, vy Mn—1 — bnT)n, m—1eP; with |Gl(05 — bli’]l)
=lg,(m — bam2) = ... =lg,(M-1 = bamn) =lg, (0 — 1)
=lg(e — biby...by) (4)
Then

|Gl(05 d blbz e bn)

= |Gl(0l — b]_r}l) A\ IG1(771 — bzr)g) VANPESVAN |Gl(7’]n_1 — bni’]n) N |G1(77n — 1)
—lg(@ — biby...by)

Certainly G; is anl-valued quantum hyper-regular grammar. Moreover, it
is clear that the productions (2) give that> aja; . ..anp in Gy with Ig, (1 =
ad...anB) = la(l > aa,...anB) € L. We similarly obtain that = b;b, ...

b in G1 from the productions (4) withs, (I Sbiby...by) =lg(l =bibs...by)
€ L. Thus very derivation = w in G with Ig(l =w) € L can be simulated
by a longer derivation = w in G; with Ig,(I =w) e L andlg, (I Sw) =
ls(I =w). Then for allw € T*, we havelg,(w) = lg(w), Thus we conclude
thatL(G) C L(Gy).

To prove the reverse inclusion, suppose that for seme T*, there is a
derivationl = w in Gy with I, (1 = w) e L. Then certainly there is a derivation

| SwinG, with Lg,(I Sw)=lg(l=>w)el (5)

whereG;, = (V4, T, |, P U Py) has all the productions i& together with all the
productions inG;.

We shall show that there is a derivationofn G, by induction on the number
of symbols fromV;1\V appearing in the derivation (5). If no such symbols appear
then (5) is already a derivation i@. Otherwise the first appearance of a symbol
of V1\V is based either on a production

a— a15r With lg,(a — a181) =lg, (@ — @181) € L
whereo — aja; . ..anS is a production inG, or on a production
o —> blnl with IGZ(Ol — bll’]l) = |Gl(0l — bli’]l) el

wherex — b;bs . .. by isaproductionirG. Consider the first of these cases. Since
the final wordw in the derivation (5) has no nonterminal symbols, and since the
grammaiG; has no productions of the tyge— y(y € T*)withlg,(& — y) € L
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for any of the symbols of/;\V, the only way in which;1, once introduced, can
subsequently disappear must involve changes froto a¢o, ..., {m_1 t0 amB.
But then the sequence of transitions

o —> 181,81 —> alay ..., {m_1 — amB  With
le,(@ — a181) = lg, (0 — a181), l6,(¢1 — @282) = g, (51 — @282)
vl (tm-1 = amB) =l (Em-1 = ampB) € L

can be replaced by a single transition

o — - amp
with
lg,(0 — a1@y...amp)
=lg,(@ — al1) Ao, (81— @82) A+ -+ Aley(¢m-1 — amP)
=lg,(@ = as1) Alg, (61 = @82) A~ -+ Alg,({m-1 — amP)
=lgla - aaz...anp)

in G2. Thus the number of symbols frovi\V has been reduced.

Equally, in the second case the derivation must involve subsequent changes
from ny to bony, ..., nn_1 to bynn, and thesen transitions can be replaced by a
single transition inG, from « to by b, - - - by with

lo,(@ — biby. .. by)
=lg,(@ = bin) Alg,(n1 = b2n2) A -+ Alg, (-1 = Bamn) Alg, (0 — 1)
=lg,(@ = bini) Ale,(n1 — b2n2) A -+ Al (-1 = bamn) Alg, (1 — 1)
—l(a — byby...by).

In both cases the derivation (5) is replaced by one with fewer occurrences
of symbols fromV;\V with Ig,(Ww) = lg,(w). By induction it now follows that
L(G,) € L(G). Hence certainh.(G;) € L(G). O

In Theorem 2andTheorem 3below, we shall prove that the setlefalued
quantum regular languages coincides with the setaflued quantum languages,
as same as that in class one.

Theorem 2.2. Letl=(L, <, A, vV, L, 0, 1)be an orthomodular lattice and M
and I-valued quantum automaton over a finite alphabet A, then there exists an
[-valued quantum regular grammar G such thgi@) = L(M).
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Proof: Let M is anl-valued quantum automaton ovAr where
M=(Q A ¢eiT)
Thel-valued quantum languadgM) over A generated b is
L(M) = {(w, In(W)))\w € A"}

We define ant-valued quantum regular gramm@ras follows:G = (Q, A,
I (=1i), P) whereP consists of the productions

p—aq(p,qe Q,ac A with lg(p— ag)=¢(p,aq)el
and
t—1teT) with lgtt > 1)=g¢(t, 1,t) € L.

We show thal (G) = L(M).
Suppose first that W, Ig(w)) = (a182...an, lg(a1d2...an)) € L(G).
Because

there is a derivation
| Saray...a, with lg(l S aa...a,) =ls(w)
We see that this derivation must be of the form
| = aith = ayady = - - = a1dp...ap0h = d. .. ap

where | — a;01, 01 —> a2, ..., 0h-1 —> @0n, gn — 1 are productions irG

with Ig(I — aith), le(G1 — @202), - - -, l6(Gr-1 = @nth), le(dn — 1) € L, and
On € T. Because

le(l = a1an) = (1, a1, qu),

lc(dr — ax0) = @(a1, @, 02),
l6(Oh—1 = @n0n) = ¢(On-1, @, Oh),
lc(dh — 1) = ¢(On, 1,0n),

andg, € T,

we ha.ve ( —> a]_q]_), (ql — a2q2)!- RS} Qn—ly anl Qn), (Qny 1an) € (P andQn € T
Thus, there exists a successful path

a az an
-0 —> Q22— -+ — Oh_1— O
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in M such that
pathy (121018202 - - - On-18nChn)
= o(l, a1, ) A 9(G1, 82, G2) A - - - A @(Gn—1, 8n, Gn) A @(Gny 1, Gn)
=lg(l = ) A (@ — 30) A - - Alg(On-1 — @n0n) Ala(Gn — 1)
=lg(l Saay...a)) =lg(w) e L.

Because for every derivation dein G, there exists a successful path ffath
with labelw such thaty (path) = Ig(derk), it follows that

Im(W) = Vpauk A In(Path) = Va—1,0,...ac 1cQmeT Ao @ (G, @41, Gi1)
= Visagq-a..a1—aggm-10c(1 = a1th) Ale(t — a02) A
-+ Alg(On-1 = @) Alc(gn — 1))

= Vgerk Al(derf) = v, s wlg(l S w) = Ig(w).

ThusL(G) € L(M).
Conversely, suppose that

W, le(W)) = (a1@2. .. an, lc(@1@2. .. @) € L(M)
so that there is a successful path
1 503 g = g1ty
in M with
Im(w) = pathy (121028202 - . - Oh—18nChn)
= ¢(l, a1, Q1) A @(01, 82, A2) A - -+ A @(Gn-1, @n, On) A @(Gn, 1, 0n)

and QD(I 1] a-ly ql)i w(qu a21 CIZ), seey (P(Qn—lu an! Qn), QO(Qn- 1! Qn) S L and Qn [S
T. Then there are productions
I — 01, 01 — @02, ..., Gn-1 —> @0, Oa — 1 in G with [(I — &),

(01 — @02), - - -+ 1(Gn-1 = @0n),1(Gn — 1) € L and
(I — ai11) = (1, a1, qu),
[(q1 — a202) = ¢(q1, a2, O2),

[(Gnh-1 = @n0n) = @(An-1, @n, On),
(O — 1) = ¢(On, 1,0n).
So there is a derivation

| = a1 > gl = -+ = &182...a00h = &1d2...a,
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in G, and
derig(l = a11 = a1y = -+ = a1@ ... a0n = Ad2. .. an)
=1l = a1th) Al(G — &) A+ Al(Oh—1 = @n0n) Al(Gr — 1)
= @(l, a1, ) A (G, 82, G2) A -+ A @(0On-1, @, ) A ¢(Ch, 1, Gn)
=Iu(w)

Because for every successful path athM there exists a derivation d&ri
in G such thatg(dert) = Iy (path), it follows that

l6(W) = Vgerk Al(dert) = v, . derig(l = w)

I 3w
= Visamoaans s, am=un.a €l (I = aity = aad =
o= A .. A00n = @82 - &)
= Viosaqq—>a....qi1—adma—l (6 (I = @101) Ale(r — ax02) A
-+ Alg(Oh-1 — anln) Alc(On — 1))
= Vao=11.0. . Gn 16QuneT Ao @0 @, Git1)
= Vpatr A I (path) = Iy (w)
ThusL(M) C L(G). O
We have shown that evelyalued quantum language islaaalued quantum

regularlanguage. Next we shall prove that everglued quantum regular language
is also arl-valued quantum language.

Theorem 2.3. Letl = (L, <, A, Vv, L, 0, 1) be an orthomodular lattice and G
an |-valued quantum regular grammar, then there exists an |-valued quantum
automaton M such that(M) = L(G).

Proof: Suppose thalt (G) is anl-valued quantum regular language, whére-

(V, T, 1, P)is anl-valued quantum regular grammar. By Lemma 1 we can assume
that the grammar G is dnvalued quantum hyper-regular grammar. i.e., that all
productions are of the form

a — ap(withaeT,o,8€V) with lg(¢ > a8) el
or
a — l(witha € V) with Ig(@ — 1) € L.
LetM = (V, T, ¢, |, T') be thel-valued quantum automaton, where
T={aeV:ia—>1eP with l(a—>1)el}
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(a, @, B) € ¢, wheneverr — a8 € P ande, 1,a) € ¢, wheneverr — 1 € P.
Suppose first thatw, Ig(w)) = (a1@z...an, lc(@az...a))) € L(G). The
derivation ofw must be of the form

| => af = a1@fo = - = ad2... 8000 = a1d2. .. ay
where
Il — apy, fp1 > @pB2, ..., fn-1 = @nfn, pn > 1€ P
with
l(l — a1p1), lc(Br — azp2), ..., lc(Bn-1 — @pn), lc(Bn — 1) € L.
Thusg, € T/
R T S i
is a successful path ikl with labelw and
o(1, a1, B1) = la(l — ap),
@(B1, @, B2) = lc(B1 — @pB2),
@(Bn-1, @, Bn) = lc(Ba-1 — anphn),
@(Bnl, Bn) =lc(Bn — 1).
Thus
pathy (laif1azB2 . . . Ba-18nfn) = @(I, a1, B1) A @(B1, @, B2) A ...
% A @(Bn-1, @, Bn) A ¢(Bn, 1, Bn)
=lg(l = aip1) Alc(Br — af2) A -+
x Alg(Bn-1 = @ Bn) Alc(Bn — 1)
= lg(w).

Because for every derivation déi G, there exists a successful path gath
such thaty (pattf) = Ig(dert), it follows that

IMW) = Vpatrk A lm(Patt) = Vg, g, sosev, pet (@1, a1, B1)
Ap(B1, @z, B2) A -+ A @(Bn-1, @n, Bn) A @(Bns 1, Bn))
= Visapfi—>aBs,. o1~ abn, fo— 1 (6 (| > a1 )Nl 6(Br—>azf) N
- Alg(Bno1 = anpn) Alc(Bn — 1))

Vaer Ala(derf) = v, 5 la(l S w) = lg(w).
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ThusL(G) € L(M).

We have shown thdt (G) € L(M). To show the reverse inclusion suppose
thatw, Iy(w)) = (a1a2. .. an, Im(a132. .. ay)) € L(M), sothatthere is a success-
ful path

138,882 .. . 88(T)
and
ImW) = o(l, a1, B1) A (B, @2, B2) A -+ A @(Ba-1, @, Bn) A @(Bn, 1, Bn)
and sol — a181, B1 — &2, ..., Bn-1 — afn, Bn — 1€ P and
(I = a1p1) = ¢(l, a1, 1),
[(B1 — @2B2) = ¢(B1, 3, B2),
1(Bn-1 = @ pn) = ¢(Bn-1. @n, Bn),
le(Bn — 1) = ¢(Bn, 1, Bn)-
Hence there is a derivation
| s> afr D> a@f= - > aqa...a0bh = a1d...a
in G such that
derig(l = a1 = aafo = -+ = Ad...anfn = 1. .. an)
=lg(l = aip1) Ala(Br = aB2) A -+ Ala(Bn-1 = @ Bn) Alc(Bn — 1)
= (I, a1, B1) A p(Br, @z, B2) A -+ A @(Bn-1, @, Bn) A 9(Bn, 1, Bn)
= Iy (w).

Because for every successful path athM there exists a derivation déri
in G such thatg(derf) = I (patH), we have

l6(W) = Veerk Alg(derf) = v, -, derig(I = w)
= Vs fioaarsaid. anfamaia..a 0€MG (I = a1f1 = awafr =
o> @ap...anfnh = ad@...a,)
= Visapr, fiaoho,..fn1—anfn ol {6 (I = 1B1) Ala(Br — a282) A
- Alg(Bn-1 = anpn) Alc(Bn — 1))
= VBB, frreV, preT (@(1, @1, B1) A @(B1, 82, B2) A=+ A @(Bn-1, @n, Bn)
= A@(Bn, 1, Bn))

= Vpathk A IM(patH() = Im(w).
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ThusL(M) C L(G). O

Corollary 2.1. The set of I-valued quantum regular languages coincides with
the set of I-valued quantum languages.

Proof:  Straightforward by Theorem 2 and Theorem 3. O

3. CONCLUSION

In this paper, we outlined a framework of grammar theory based on quantum
logic corresponding to the automata theory based on quantum logic established
by Ying (2000a,b). We defined thevalued quantum regular grammar and hyper-
regular grammar. Then we proved that eMemalued quantum regular language is
anl-valued quantum hyper-regular language. The most important results obtained
in this paper is the Theorem 2 and Theorem 3 that say the setadfied quantum
regular languages coincides with the séteflued quantum languages. The further
study about the properties of thealued quantum grammars will be left to a later
paper.
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